
End-to-end testing in complex 
GitOps environments

27-06-2022 - Etienne Tremel



Agenda

1. Who am I

2. Journey to continuous deployment

3. GitOps

4. Promoting images across environments

5. Image promotion the GitOps way

6. Testing

7. Simplicity to complexity

8. End-to-end testing

9. Demo



Who am I

- Cloud engineer?

- Currently contracting for the group Ahold Delhaize (Albert Heijn)

- Part of the collective FikaWorks

- Cloud Pirate

- Love open source



Disclaimer

Terms used during this presentation can be misused. 



Journey to continuous 
deployment



Continuous Integration



Continuous Delivery



CI/CD



Continuous deployment



Typical journey of application delivery

- Peer review
- Lint
- Source code analysis
- Security scanning
- Code quality
- Build
- Publish
- Tests

- Unit tests
- Integration tests
- Performance tests



GitOps
A way of implementing Continuous 
Deployment for cloud native applications 
focusing on developer-centric experience.

Source: https://www.gitops.tech



Infrastructure as code



Traditional push model



Pull model



Controllers
Active projects

- FluxCD (CNCF incubation)
- ArgoCD (CNCF incubation)
- Keel
- Werf

Abandoned projects

- Faros
- GitKube



Pull model per cluster



Pull model from a management cluster



GitOps principles

Declarative

A system managed by GitOps must have its desired state 
expressed declaratively.

Versioned and Immutable

Desired state is stored in a way that enforces immutability, 
versioning and retains a complete version history.

Pulled Automatically

Software agents automatically pull the desired state 
declarations from the source.

Continuously Reconciled

Software agents continuously observe actual system state 
and attempt to apply the desired state.

Source: https://opengitops.dev/

https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md#software-system
https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md#declarative-description
https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md#state-store
https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md#continuous
https://github.com/open-gitops/documents/blob/v1.0.0/GLOSSARY.md#reconciliation


Promoting images across 
environments



Promotion by retagging images



Image tagging conventions

<image>:<commit sha> — initial image

backend:2fd82529590a02f1d06ca619aee64b359f6ea7b5

<image>:<semver> — tag match release tag

backend:v1.0.0

<image>:<environment> — tag match target environment 

- backend:dev
- backend:prod

<image>:<custom> — custom convention

- backend:1.0.0-alpha.0 — could match development environment
- backend:1.0.0-beta.0 — could match acceptance environment
- backend:1.0.0 — could match production environment



Image promotion based on multiple container 
registries



Image promotion the GitOps way



Update image 
version manually

Someone has to manually update the 

manifests repository with the correct 

version of the image.



Update image version 
automatically from 
the CI

In the application repository CI, a step 

update the manifests repository via 

pull-requests / or directly to main branch.



Update image version 
automatically with 
controllers

A controller detect new images pushed to the registry and 
update the manifests repository (via pull-request or directly to 
main branch).

Example of controllers that can do that:

- RenovateBot
- ArgoCD image updater
- Flux image-reflector-controller and 

image-automation-controller



Testing phase for continuous 
deployment



Test pyramid

Source: https://automationstepbystep.com/2020/05/02/what-is-a-test-pyramid/

Make the process of testing faster, 
efficient and cost-effective.

- Maximum functionality tested by 
unit tests

- More functionality tested by less 
brittle tests like unit and API tests

- Most testing should be automated



Type of tests

- Unit tests — small piece of code / at the function level
- Integration tests —between services
- UI tests — user interface
- End-to-end tests — from beginning to end
- Performance tests — ui performance
- Load tests — behavior under high traffic
- Fuzzy — random input
- Security tests — security
- Smoke tests — tests determined by business for newly developed feature
- Regression testing — make sure that newly introduced features doesn’t break previous tests
- …



From clear to complex



Cynefin model

It helps managers to identify how they perceive situations and 

make sense of their own and other people's behaviour.

- clear/obvious = safe and battle tested industry 

standard

- complicated = expert opinionated on the 

implementation

- complex = no expert, no guideline, few people with 

knowledges

- chaotic = unknown territory, no expert, no guidelines, 

no knowledges

Source: https://itrevolution.com/cynefin-four-frameworks-of-portfolio-management/



Single-tenant



Single-tenant vs Multi-tenant

Single-tenant cloud architecture is one where a 

single software instance and its supporting 

infrastructure/database serve only one customer. 

In a single-tenant environment, all customer data 

and interactions are separate from every other 

customer. Customer data is not housed in the 

same database and there’s no sharing of data in 

any way.

A multi-tenant architecture is one where a single 

software instance and database serves multiple 

customers (i.e. tenants).

Source: https://www.cloudzero.com/blog/single-tenant-vs-multi-tenant



Multi-tenant



Complex environment
Multiple clusters
Multiple teams
Multiple configurations



Example of continuous deployment 
implementation for complex environments



Demo



Architecture



Questions?



Useful links

- FluxCD: https://fluxcd.io 

- Git release gate project: https://grgate.dev 

- GRGate demo repositories: https://github.com/grgate 

https://fluxcd.io
https://grgate.dev
https://github.com/grgate


Thank you!


