
container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

info@container-solutions.com
container-solutions.com

Kubernetes
Deployment
Strategies

Etienne Tremel
etienne.tremel@container-solutions.com

@etiennetremel

20.03.2018
Day of Cloud, Oslo

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

What is what?

A

F

C D

E

B

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Kubernetes deployment: in brief

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Kubernetes deployment: complex routing

Ingress controllers:
- Nginx
- Traefik
- Istio
- GKE
- etc.

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Kubernetes deployment: configuration

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Readiness/Liveness probeapiVersion: v1
kind: Pod
metadata:
 name: goproxy
 labels:
 app: goproxy
spec:
 containers:
 - name: goproxy
 image: k8s.gcr.io/goproxy:0.1
 ports:
 - containerPort: 8080
 readinessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 5
 periodSeconds: 10
 livenessProbe:
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 periodSeconds: 20

Liveness

Any code greater than or equal to 200 and less
than 400 indicates success. Any other code
indicates failure.

livenessProbe:
 httpGet:
 path: /healthz
 port: liveness-port

HTTP request:

Readiness

livenessProbe:
 exec:
 command:
 - cat
 - /tmp/healthy

Shell command:

Exit code return 0: healthy
Exit code return 1: unhealthy

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Getting started

1. git clone -b gke
https://github.com/ContainerSolutions/k8s-deployment-strategies

2. Play around with the different strategies

■ Recreate
■ Ramped
■ Blue/Green
■ Canary
■ A/B Testing
■ Shadow

https://github.com/ContainerSolutions/k8s-deployment-strategies

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

[...]
kind: Deployment
spec:
 replicas: 3
 strategy:
 type: Recreate
[...]

$ kubectl apply -f ./manifest.yaml

Recreate
Version A is terminated then version B is rolled out

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Recreate
Version A is terminated then version B is rolled out

Pros:
- easy to setup

Cons:
- high impact on the user, expect downtime that depends on both shutdown and

boot duration of the application

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Ramped (aka incremental, rolling update)

Version B is slowly rolled out and replacing version A

[...]
kind: Deployment
spec:
 replicas: 3
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxSurge: 2 # how many pods we can add at a time
 maxUnavailable: 0 # maxUnavailable define how many pods can be
 # unavailable during the rolling update
[...]

$ kubectl apply -f ./manifest.yaml

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Ramped (aka incremental, rolling update)

Version B is slowly rolled out and replacing version A

Pros:
- easy to use
- version is slowly released across instances
- convenient for stateful applications that can handle ongoing rebalancing of the

data

Cons:
- rollout/rollback can take time
- no control over traffic

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Blue/Green (aka Red/Black)

Version B is released alongside version A, then the traffic is switched to version B

[...]
kind: Service
spec:
 # Note here that we match both the app and the version.
 # When switching traffic, update the label “version” with
 # the appropriate value, ie: v2.0.0
 selector:
 app: my-app
 version: v1.0.0
[...] $ kubectl apply -f ./manifest-v2.yaml

$ kubectl patch service my-app -p \
 '{"spec":{"selector":{"version":"v2.0.0"}}}'
$ kubectl delete -f ./manifest-v1.yaml

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Blue/Green (aka Red/Black)

Version B is released alongside version A, then the traffic is switched to version B

Pros:
- instant rollout/rollback
- good fit for front-end that load versioned assets from the same server
- dirty way to fix application dependency hell

Cons:
- expensive as it requires double the resources
- proper test of the entire platform should be done before releasing to production

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Canary
Version B is released to a subset of users, then proceed to a full rollout

[...]
kind: Deployment
metadata:
 name: my-app-v1
spec:
 replicas: 9
 template:
 labels:
 app: my-app
 version: v1.0.0
[...]

[...]
kind: Service
metadata:
 name: my-app
spec:
 selector:
 app: my-app
[...]

[...]
kind: Deployment
metadata:
 name: my-app-v2
spec:
 replicas: 1
 template:
 labels:
 app: my-app
 version: v2.0.0
[...]

$ kubectl apply -f ./manifest-v2.yaml
$ kubectl scale deploy/my-app-v2 --replicas=10
$ kubectl delete -f ./manifest-v1.yaml

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Canary
Version B is released to a subset of users, then proceed to a full rollout

Pros:
- version released for a subset of users
- convenient for error rate and performance monitoring
- fast rollback

Cons:
- slow rollout
- sticky sessions might be required
- precise traffic shifting would require additional tool like Istio or Linkerd

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

A/B Testing
Version B is released to a subset of users under specific condition

[...]
kind: RouteRule
metadata:
 name: my-app-v1
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v1.0.0
 match:
 request:
 headers:
 x-api-version:
 exact: "v1.0.0"
[...]

[...]
kind: RouteRule
metadata:
 name: my-app-v2
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v2.0.0
 match:
 request:
 headers:
 x-api-version:
 exact: "v2.0.0"
[...]

$ kubectl apply -f
./manifest-v2.yaml
$ kubectl apply -f ./routerule.yaml

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

A/B Testing
Version B is released to a subset of users under specific condition

Pros:
- several versions run in parallel
- full control over the traffic distribution
- great tool that can be used for business purpose to improve conversion

Cons:
- requires intelligent load balancer (Istio, Linkerd, etc.)
- hard to troubleshoot errors for a given session, distributed tracing becomes

mandatory

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Shadow (aka mirrored)
Version B receives real-world traffic alongside version A and doesn’t impact the response.

[...]
kind: RouteRule
spec:
 destination:
 name: my-app
 route:
 - labels:
 version: v1.0.0
 weight: 100
 - labels:
 version: v2.0.0
 weight: 0
 mirror:
 name: my-app-v2
 labels:
 version: v2.0.0
[...]

$ kubectl apply -f
./manifest-v2.yaml
$ kubectl apply -f ./routerule.yaml

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Shadow (aka mirrored)
Version B receives real-world traffic alongside version A and doesn’t impact the response.

Pros:
- performance testing of the application with production traffic
- no impact on the user
- no rollout until the stability and performance of the application meet the

requirements

Cons:
- complex to setup
- expensive as it requires double the resources
- not a true user test and can be misleading
- requires mocking/stubbing service for certain cases

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Sum up

■ recreate if downtime is not a problem

■ recreate and ramped doesn’t require any extra step (kubectl apply is enough)

■ ramped and blue/green deployment are usually a good fit and easy to use

■ blue/green is a good fit for front-end that load versioned assets from the same server

■ blue/green and shadow can be expensive

■ canary and a/b testing should be used if little confidence on the quality of the release

■ canary, a/b testing and shadow might require additional cluster component

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

Decision
diagram

container-solutions.com etienne.tremel@container-solutions.com Kubernetes Deployment Strategies @etiennetremel

info@container-solutions.com
container-solutions.com

Thanks!

Etienne Tremel
etienne.tremel@container-solutions.com

@etiennetremel

Hands on Kubernetes deployment strategies:
github.com/ContainerSolutions/k8s-deployment-strategies

Blog post about strategies:
container-solutions.com/kubernetes-deployment-strategies
thenewstack.io/deployment-strategies

Next

https://github.com/ContainerSolutions/k8s-deployment-strategies
http://container-solutions.com/kubernetes-deployment-strategies/
https://thenewstack.io/deployment-strategies/

